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FOREWORD

This report is submitted to the National Aeronautics and Space Administration
(NASA), George C. Marshall Space Flight Center, Alabama, in fulfillment of the NASA-
Defense Purchase Request H-13047B dated 15 May 1975 and as modified by Amendment 3
on 8 March 1976. The initial purchase request called for a study of the then current
Space Shuttle Range Safety Command Destruct System. The results of that Phase I
study, indicating marginal performance of the system, were transmitted to NASA in a
letter report dated 2 February 1976.

The current Phase II study analyzes ordnance options for a destruct system that
will overcome the shortcomings of the earlier system and will assure catastrophic
breakup of the external liquid propellant tanks of the Space Shuttle. The new
analysis, reported herein, indicates the feasibility of a destruct system utilizing
linear-shaped charges mounted in the operational instrumentation trays on the external
tank to accomplish the objective.

A current Phase III study under a new amendment to the purchase request is
developing the break-up model of the Space Shuttle cluster at various times into
flight.

The work described in this report represents the cooperative effort of many
persons here at the White Oak Laboratory, Marshall Space Flight Center, and various
NASA contractor facilities. To name all to whom we, the authors of this report, are
indebted would be impossible since much of the necessary information and the proffered
help came from "staff." So, to these staffs - many thanks. The fact that we had easy
access to these s-affs at Marshall Space Flight Center, Martin Marietta Aerospace,
Michoud, Louisiana, Rockwell International, Downey, California, and other places, is
due to the efforts of Jack Roach, Code EL-42, MSFC. His managerial and technical
direction and guidance of the task, executed so cooperatively and patiently, are
greatly appreciated. The final touch to this report, its typing, represents the
dedicated efforts of Monica Lloyd, Valarie Williams, and Wanda Ohm who strived
mightily, and succeeded, against great odds, e.g., short deadline, poorly legible

manuscripts, and the press of other tasks. Thanks!

N.L. COLEBURN T,P. LIDDIARD
W.M. HINCKLEY R.E. PHINNEY
D.L. LEHTO J. PETES, Team Leader

J. F. PROCTOR
By direction
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CHAPTER 1

BACKGROUND

INTRODUCTION

A number of explosive ordnance system options were analyzed for defeating the
structural integrity of the external tank (ET) of the Space Shuttle upon command of
the range safety officer. In destructing the ET, rapid dumping and minimum mixing
of the LOX and LH 2 contained in the ET were specific objectives. In some of the
options studied, the ordnance is contained in the intertank (IT) with the explosive
forces directed against the IT walls and the lower LOX tank and upper LH 2 tank domes
and walls. In other options, all ordnance material is located outside the ET, with
the explosive power directed against the 1oX and LH 2 tank walls. In a third option,
ordnance is located inside the IT and outside the ET - a so-called hybrid system -
with explosive forces directed at the lower portions of the LOX and LH2 tanks.

The number of options analyzed was large, because many demands for the total
system had to be satisfied. Assured destruct at all stages of flight from lift-off
to orbiter separation, light weight, commonality of ordnance for LOX and LH 2 tank
destruct, safety and reliability of the ordnance, minimum structural and design
changes to the Space Shuttle system, and minimum mixing of the dumped LOX and LH 2
were some of the coiditions that had to be considered. The extent to which these
conditions could be mat provided the criteria by which the different options could
be and were evaluated. Analysis and some tests indicated that a system consisting
of linear-shaped charges 'LSC's) mounted into the operational instrumentation (01)
cable trays outside the ET would best meet the destruct requirements.

The requirement for an ordnance system dedicated to destruct the ET became
evident, in part, after the earlier Phase I study of hie then current design of the
Space Shuttle Command Destruct System indicated that Aestruct of the ET, and specif-
ically th• LH2 tank of the ET, was not assured for all Jlight times from lift-off to
100 seconds. In this early system, there was no explosive ordnance system on the
ET itself. ET destruct was largely dependent on the blast, thrust, and fragment
forces generated by the solid rocket boostcrs (SRB's) attached to the ET upon com-
mand destruct of the SRB's. (Destruct of the LOX tank portion of the ET was to be
accomplished by conically shaped charges located in the SRB frustums and directed at
the LOX tank.)

In this early study, two destruct models for destroying the LH2 tank of the ETI were investigated. One model considered a clamshell-type longitudinal opening of
the SRB's which generated large lateral inboard thrusts on the ET. The other

i1
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examined a catastrophic and rapid breakup of the SRB's, creating blast and fragments
to impact the ET with destructive force. The two models were considered to be
mutually exclusive, i.e., if one model were realized in actuality, the other would
not be. The blast model predicted the catastrophic buckling of the LH2 tank at all

time of interest into flight. However, the degree of rupturing (tearing) and the
rate of LH 2 dispersal were difficult to quantify. The c l amshell model was predicted
to have more modest destruct capabilities. Destruct of the LH 2 tank was predicted
for late times into flight, i.e., 50 and 100 seconds, but at earlier times, i.e.,
0 and 10 seconds, destruct was considered marginal or unlikely.

With no clear indication as to which model of SRB destruct would prevail in

actuality and considering the marginal nature of the subsequent LH 2 tank destruct,
particularly in the clamshell analysis, it was concluded in the Phase I study that
ET destruct via SRB destruct was not assured for all the flight times and conditions
of interest.

This Phase II study was initiated to explore and analyze destruct system ordnance
alternatives which would assure ET breakup and rapid dumping of the LOX and LH 2 . The
options to be analyzed would produce explosive forces that directly attacked the ET
(both the LOX and LH 2 tanks) without depending on SRB destruct mechanisms. Since
there was no dependence on SRB actions or presence, the range of flight time interest
could be extended to post-orbiter separation.

OBJECTIVES

The guidelines, assumptions, and objectives of Phase II changed as the study
progressed. These changes provided a broader range of options than first considered.
The initial set of assumptions and scope of work as specified by NASA were as follows.

ASSUMPTIONS

1. The Triplex Command Destruct System shall be the baselined design.

2. Configurations to be considered:

a. Nominal first-stage cluster (2 SRB's plus orbiter/ET).

b. First-stage cluster with one SRB inadve±rtently separated.

c. Nominal second-stage cluster (ET/orbiter).

3. The SRB destruct system will not include conically shaped charges mounted
i J in the SRB frustum for the purpose of destructing the ET LOX tank.

SCOPE OF WORK. Part I, based on the assumptions outlined above, analyzes the
destruct system ordnance options for installation in the ET intertank region (between
the LOX and LH 2 tanks). This analysis should consider such devices as conically
shaped charges, pancake charges, bi-directional charges, etc., and will produce the
following end products:

1. Determination of the most effective type of charge for ET propellant dis-
persion (both LOX and LH2 tanks) in accordance with Eastern Test Range
requirements.

1-2
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2. Definition of the optimum location for the charge installations in the ET
intertank which will produce catastrophic failure of both propellant tanks, with the
minimum yield resulting from destruct action. Charges must be redundant and redun-
dantly initiated by a confined detonating fuse (CDF).

It must be noted that in this initial statement of work, the ordnance system
options were limited to installation in the IT region between the LOX and LH2 tanks
constituting the ET. It soon became apparent that this limitation imposed severe

S" design and operational problems, particularly in terms of the large weight of ordnance
items required, and the relatively high degree of LOX-LH2 mixing anticipated.

To ease these problems, the guidelines were modified to permit destructing the
LH2 tank by means of an externally located shaped charge positioned in the cross
beam connecting the aft end of the orbiter to the ET. Also, the requirement for
redundancy was dropped.

Once the initial specification to contain all ordnance items in the IT was
breached, the next logical step was to permit analysis cf ptions using all the neces-
sary explosive ordnance items outside the IT. In fact, i- is this later option which
is recommended for ET destruct. The description of the recommended system and the
other options studied are described in the following chapters.

DISCUSSION

Some elaboration of the assumptions, scope of work, and objectives as initially
stated and as they evolved may be useful in putting the following chapters into
proper perspective.

The called for Triplex Command Destruct System consists of three separate explo-
sive ordnance systems, two dedicated to SRB destruct and the third to ET destruct.
The two SRB destruct systems are identical, consisting of LSC's mounted outboard and
along about 75 percent of each SRB length. The function of this system is twofold:
(1) to rupture and destroy the SRB's and thus terminate the forward thrust of the
Space Shuttle; and (2) through the SRB hydrodynamic and mechanical destruct effects,
e.g., blast, fragments, and lateral thrust of the ruptured SRB, buckle and destroy
the LH 2 portion of the ET and thus dump the LH 2 . This system works for SRB destruct
and, in general, for ET destruct so long as at least one of the SRB's is attached to
the ET when the command destruct signal is given. However, as noted earlier and
described in detail in Phase I, assured destruct of the ET at early times into flight
is marginal and, perhaps, unlikely.

The purpose of the third system is to overcome this marginal situation by pro-
viding ordnance to produce directly catastrophic failure of the ET upon command.
Dependence on the presence of functioning of the SRB destruct system is not neces-
sary. With a system dedicated solely to ET destruct, times of interest -or destruct
action can now extend from iift-off to second-stage deployment when only the ET and
the orbiter make up the cluster. For command destruct ;ignals initiated when one or
both SRB's are part of the cluster, the SRB destruct effects can be considered as
bonus effects enhancing the effectiveness of the ET destruct system.

Effective ET destruct is the obvious goal. But what is effective? In the con-
text of the range safety problem the command destruct system is designed to solve,

1-3
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the Air Force Eastern Test Range Manual (AFETRM-127-1) serves as an official guide.
It states:

4.3.1.3.1.2 For liquid propellant stages using nontoxic propel-
lants, the destruct charges must cause penetration of the pro-
pellant tanks, both fuel and oxidizer, to the extent necessary
for rapid dispersion of the propellants. The intent of this
requirement is to ensure the maximum possible amount of propel-
lants are dispersed before vehicle impact with the ground. This
will reduce the impact area hazard by rnducing the explosive
yield.

Penetration of the tanks is given as a specific structural requirement for a
destruct system. However, the intent of this penetration (or catastrophic failure as
outlined in the initial work statement) can be considered the governing measure of
the destruct system's effectiveness. This intent is to reduce the blast and fragment
hazards associated with the dispersal, mixing, and potential explosion of the LOX and
LH2 upon rupture of the ET.

While the AFETRM concerns itself primarily with hazards upon impact with the
ground, NASA is also concerned about the hazards to the Space Shuttle orbiter and its
occupants. Hence, minimum explosive yield due to destruct action at all times of
flight is called for in the Scope of Work. The Scope of Work further calls for con-
sideration of such explosive devices for ET destruct as conically shaped charges,
pancake charges, bi-directional charges, and others. The specified charges were all
considered along with hemispherical and linear-shaped charges, omni-directiondl bare
and cased charges, focused blast and projectile charges, and continuous rod charges.

This multiplicity of charge types permitted many options to be examined - options
of charge placement and options of destruct mechanisms. Initial guidelines required
all ordnance items to be contained in the IT. This limitation was imposed with the
desire to keep ET design changes incurred by the addition of the ET destruct system
to a minimum. However, it soon became evident that IT locations imposed severe
limitations and compromised performance for all of the options analyzed: ordnance
weight was large, and for all but one of the many systems studied, LOX and LH 2 mixing
would potentially produce high blast yields. This one exception, an explosive pro-
jectile penetrator, had the dubious distinction of requiring the most development
time. Later guidelines permitted ordnance to be located outside the IT. This pro-
vided more options and, as indicated earlier, the externally mounted LSC's offered
the best solution to effective ET destruct.

The several destruct mechanisms provided by the explosive charges were consid-
ered in the options. These mechanisms include shock waves in itir and liquids, e.g.,
LOX and LH2, explosion product gases and debris, fragments from cased charges, and
jets of metallic material from shaped charges.

Airblast - the pressure wave of fin-te amplitude generated in air by an explo-
sion - was a primary damage mechanism. Iut as the altitude of concern increased
with increased time into flight and near vacuum atmospheric conditions were
approached, blast became a less effective damage mechanism. This resulted in the
need for larger and larger charges to produce the same desired degree of ET damage
as could be obtained at sea level with smaller charges. Jets, fragments, and

1-4
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explosion gases and debris products do not suffer from these shortcomings; hence,
they became viable contenders in many of the options as the primary damage

mechanisms. In fact, the jet produced by LSC's proved to be the most effective ET
destruct mechanism.

The immediate purpose of the ET destruct system is, of course, penetration or

catastrophic rupture of the ET, resulting in rapid dumping of the LOX and LH2,
particularly at altitude. The size of the penetrations and ruptures and the rate of
dumping are more than just functions of the destruct explosive performance; they are
also functions of the pressure across the ET walls and the amount of LOX and L112 in
the tanks at any particular time into flight. These too are functions of altitude.
The range of interest for the destruct charge to operate extends from lift-off to
about 450 seconds into flight, from sea level altitude to about 378,000 feet, from1 atmospheric pressures of 14.7 psi to 9.7 x 10-8 psi or near vacuum conditions. Some
of these items of interest for discrete timeE, are shown in Table 1-1.

As indicated in the Scope of Work Statement, blast yield of the mixed LH2 and

LOX is of concern. But the pressure amplitudes at different distances from any given
yield are important in tLrms of hazards to ground installations and Space Shuttle
components. These pressure ,ersus distance relationships are strongly dependent on
the altitude at which the LOX and LH 2 mixture explodes. At high altitudes, i.e.,
low atmospheric pre:3ures, the pressure generated by a given yield at a given distance
is considerably less than that at lower altitude, such as sea level. All the fore-
going altitude depeadent phenomena and effects are taken into account in this report.

It is reiterated that the efforts in this study ccncentrated on ET destruct,
i.e., rupturing both the LOX and LH 2 tanks with ordnance items dedicated solely to
ET destruct. No dependence or. ordnance items on the SRB's or SRB destruct actions is
necessary, as was the case in the Phase I study. However, the ' -, damage effects
to the ET resulting from SRB destruct mechanisms are recognized. .,is bonus will be
encountered in the nominal first-stage cluster when both SRB's are attached to the ET
and for the first-stage cluster when one SRB is inadvertently separated. The increased
severity of rupture In the LHI2 tank, and probably in the LOX tank, may be a mixed
blessing. On one hand, there is the probcbility that the enhanced damage will bring

about more mixing of the dumped LOX and LH2 with a concurrent potentially larger blast
yield. On the other hand, the more rapid dumping may bring about greater dispersal of
the LH 2 and LOX with a lesser potential blast yield resulting. These situations were
not analyzed. It is believed that the analysis of and predictions for the basic ET
destruct system are adequate for planning and operaticnal purposes. The "bonus
effects" if analyzed in all their complexity would be very time-consuming and would
not significantly change the basic results.

SUMMARY

With the foregoing discussion attempting to put the study in time and technology
•, perspectives, and hopefully serving as a catalyst to bring the succeeding chapters

into a coherent whole, the objectives of the task are summarized.
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TABLE 1-1 ET FLUID VOLUMES AND PRESSURES

LOX Tank LH 2 Tank

Ullage LOX Ullage LH 2

Temp (*F) -210 to -124 -297 -372 to .-180 -423

Total Vol (ft 3 ) 19,610 53,510

Vol (ft 3 ) at 0 sec 600 19,010 2,180 51,330
10 1,010 18,600 3,270 50,240
50 2,540 17,070 7,360 46,150

100 4,520 15,090 12,640 40,870
350 14,750 4,860 40,140 13,370
450 18,640 970 50,600 2,910

Mass (ib) at 0 sec 1.345 x 106 2.258 X 105
10 1.316 . 106 2.210 . 10 5

50 1.208 x j06 2.0$O x 105
10" 1.068 x 106 1.798 x 105
350 0.344 . 106 0.588 . 105
450 0.0685 x 106 0.128 x 105

Height (in) at 0 sec 500 1,080

10 475 1,055

50 415 975
100 360 865
350 140 310
450 55 95

Ullage Pressure 20 psia to 32 psia to
25 psig 37 psia

Pressure at 0 sec 5-25 25-45 at bottom 17-22 20-25 at bottom
across tank 10 6-25 39-58 18-23 23-28
wall (psi) 50 15-25 39-49 27-32 30-35

100 20-25 62-67 32-37 38-43
350 20-25 32-37 32-37 34-39
450 20-25 27-32 32-37 33-38

The basic objective of the Phase II study was to analyze and provide conceptual
designs for destruct ordnance options required to produce catastrophic failure of
both liquid propellant tanks comprising the ET. Important considerations were:

1. Rapid dvmping of the LOX and LH 2 at altitude.

2. Minimum mixing of the LOX and LH2 to achieve minimum potential blast yield
of the mixture.

4
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3. Minimum weight of ordnance devices.

4. Commonality of ordnance devices.

5. Location of ordnance devices.

I.
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CHAPTER 2

EXECUTIVE SUMMARY

OBJECTIVES AND ANALYSES

More than a dozen explosive systems to destruct the external tank (ET) of the
Space Shuttle upon command of a range safety officer were designed in concept and
evaluated in this Phase II study. Based on the relative merits of these systems,
linear-shaped charges (LSC's) mounted in the Operational Instrumentation (01) trays
of the LH 2 and LOX tanks (Fig. 2-1) are considered to be the most effective way of
meeting the obJetives.

In the earlier Phase I study it was determined that the Command Destruct Sys-
tem, as then designed, did not assuredly bring about the desired destruction of the
ET at all times of interest. In this early system, ET destruct was dependent on the
mechanical and hydrodynamic effects generated through the operation of the explosive
system used to destruct the attached solid rocket boosters (SRB's),

This Phase II study had as its objectives the analysis of ordnance systems
dedicated solely to ET destruct, evaluating the relative merits of each system, and
then, suggesting a most feasible system for development, verification, and demon-
stration. Although catastrophic failure of the liquid propellant tanks was the major
objective, other objectives or concerns had to be considered. Effective destruct had
to be attained at all times into flight from lift-off to second-stage separation.
"Effectivu" was defined as rapid dispersal of the LOX and LH2 with minimum mixing so
that the potential blast yield of the mixture would be at a minimum. Recognizing the
weight restrictions common to space vehicles, it was necessary to strive for small
ordnance systems. To avoid unduly severe environments for the ordnance items and to
achieve more or less ready placement of the items, location of the ordnance items in
and about the ET had to be considered. Costs and development times were also of
concern.

in the study, destruct system options were analyzed with all ot the toregoing
in mind. The first Ftep in the analysis was to ascertain that the ordnance item
could cause LH2 and LOX tank breakup. If this criterion was met, the other consid-

* erations were investigated. As it turned out, many of the system- and devices
studied were found wanting in many of these characteristics. Sjme were much too
heavy, some quite expensive, others difficult to position for effective operation,
and still others required much development and advanced technology. These findings
are noted for the systems studied. They, in fact, provided the basis for selecting
and suggcsting the best system to accomplish the desired objectives.
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